
A modular damage model for quasi-brittle solids –
interaction between initial and induced anisotropy
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Summary This paper proposes a three-dimensional thermodynamically controlled damage
model for a wide class of quasi-brittle materials, the modelling strategy being a continuation of
the earlier work, [12–15]. The purpose is to keep an existing modular structure and to
introduce new features to its framework. These are: (i) a thrifty insertion of initial orthotropy,
(ii) the absence of irreversible strain after loading/unloading cycles (in opposition to rock-like
materials described by the initial model) and especially (iii) the competition between initial
orthotropy and anisotropy induced by mesocrack growth. The proposed innovation consists in
adding second-order fabric tensors in conjunction with a damage tensor in the expression of
the thermodynamic potential. Experimental data for a test composite material are simulated by
this approach.

Keywords Quasi-brittle solid, Modular model, Damage, Initial orthotropy, Fabric tensor,
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1
Introduction
In the field of brittle materials (e.g. rock-like solids, concrete, ceramic matrix composites), a
number of nonlinear models involving explicitly damage effects by mesocrack growth appeared
in the literature during the last two decades. Among them, two main classes can be roughly
distinguished: micromechanical approach (see, e.g. [1–3] for rocks and concrete or [4, 5] for
composites) and phenomenological one (e.g. for composites, [6–8]). The first class of models,
though physically well-grounded, suffers, in general, from inherent complexity and restricted
applicability (frequently to 2D problems), which is sometimes related to problems of numerical
integration. One can consult [9] for a general discussion on models for brittle composites. In
this context, a modelling strategy has been advanced, attempting to promote a sort of com-
promise by linking several methodological tools: tensor functions representation, thermody-
namics, internal variables. It remains macromechanically based while, at the same time, most of
the model ingredients are strongly enriched with some micromechanical acquisitions. This way
has been followed recently by some authors, see e.g. [10, 11]. One of the advantages of this
macro/micromechanical interpretation strategy consists in putting forward modular and ‘open’
structures of the resulting models. For example, the model of anisotropic damage for initially
isotropic brittle solids involves a so called ‘basic version’, followed by more advanced multi-
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dissipative models of growing complexity and accounting for further nonlinear features. The
main steps of the development of this model are given as follows:

� Within a thermodynamic framework of internal variables, the basic level, [12], describes the
gradual degradation by mesocrack growth, inducing a number of effects such as secondary
anisotropy and dilatancy.

� Under compressive loading, favorably oriented cracks may close, leading to a stiffness–
recovery phenomenon. This ‘unilateral’ effect may be exhibited at cyclic tension-and–
compression tests. The basic version takes into account that created cracks definitely
influence the effective properties. The second modular unit, [13], proposes a rigorous for-
mulation of the stiffness recovery due to crack closure, based on micromechanical studies
and avoiding stress discontinuities during the crack opening/closure transition.

� The previous stage concerns the normal unilateral effect: the stiffness is recovered in the
direction normal to the closed crack set, while the shear (tangential) modulus remains
affected by damage (as if cracks were perfectly lubricated). The third step, [14], models the
dissipative frictional locking or sliding on rough crack lips (when closed), inducing the
recovery of shear moduli and complex hysteretic effects during cyclic torsion, for instance.
This third modular unit takes into account the coupling effects between damage and sliding
in a 3D framework.

The whole model includes the three stages, covers thus a large number of events encountered in
quasi-brittle materials. Still, its macroscopic formulation remains simple and adapted to struc-
tural analysis. An emphasis has been put on the identification of a small number (nine) of param-
eters and on the convenience of the integration scheme. Many examples can be found in [12–15].

The purpose of the present paper is to further extend this modular-damage approach by
reconsidering two mechanical features concerning its basic segment. On the one hand, while
accounting for the anisotropy induced by the mesocrack growth, the model, given in [12] in its
first version, considers the material initially isotropic. This assumption is found too restrictive
for a number of materials (e.g. sedimentary rocks, fiber-reinforced composites, etc.). Here, the
introduction of initial orthotropy is considered by using a parsimonious optimised method
consisting in combining three transverse isotropy operators (fabric tensors). One obtains but a
small number of constants to be determined, compared to other approaches. On the other
hand, the basic version of the model [12] recalled above puts forward the role played by
damage-induced residual effects for rock-like solids as e.g. residual strain exhibited by tension
– compression cycles. However, for a large family of brittle matrix composites (e.g. ceramic-
matrix composites, [16]), this permanent stress/strain is not manifest, at least for matrix-
cracking stage of degradation. Thus, this paper attempts to relax some residual damage-
induced effects in order to cope with initially anisotropic materials without irreversible strain.
It is worth noting that multiple matrix-cracking is the primary dissipative mechanism con-
sidered here. An important issue in this framework is the interaction of oriented damage (and
respective secondary anisotropy) with an initial anisotropy. Some micromechanical studies,
[17], address this problem and propose some tools to quantify the respective coupling. Those
tools can be hardly exploited in a general 3D context. An alternative is thus advanced, in-
volving conjunction of damage and fabric tensors to deal with coupling effects of primary
anisotropy vs. those of evolving damage microcracking-induced one.

The paper is organised as follows: Sec. 2 treats the problem of initial anisotropy, while the
aim of Sec. 3 is to model the mesocrack growth in the matrix inducing no significant irre-
versible stress/strain effects as well as its interaction with the initial anisotropy. As stressed
above, this latter phenomenon is described by a formalism keeping the wish to propose an
efficient alternative with respect to some micromechanical results. The capability of the model
is validated by simulating tension tests on CMC plates.

2
Initial anisotropy
The basic version of the model mentioned in Sec. 1 concerns materials whose initial mechanical
behaviour can be considered as isotropic. However, a number of materials do not fulfill this
assumption and may exhibit a strong initial anisotropy due to the fabrication process, e.g.
reinforced composites or sedimentary rocks. An alternative formulation preserving the
methodological framework of the modelling allows one to take into account this primary
anisotropy. In this section, this is orthotropy. The case of transverse isotropy is first studied,
and then extended to orthotropy.
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2.1
Case of transverse isotropy
The mechanical properties of a transversely isotropic material are identical in planes ortho-
gonal to a given axial direction, so that the elastic stiffness matrix C0 takes the following
expression if 1 is the symmetry axis (the classical Voigt convention is adopted):

C0 ¼

C0
11 C0

12 C0
12 0 0 0

C0
22 C0

23 0 0 0
C0

22 0 0 0
1
2 ðC0

22 � C0
23Þ 0 0

sym C0
55 0

C0
55

2
6666664

3
7777775

: ð1Þ

The superscript ‘‘0’’ means initial (i.e. virgin material’s) stiffness. Relevant literature deals with
initial anisotropy by formulating a thermodynamic potential related to initial elasticity, w0,
within the framework of the tensor function representation theory, [18]: the form of w0 must
remain invariant with respect to the coordinate transformation expressing the material sym-
metries, and is built by the use of polynomial invariants (see [19] for the general formulation
and a 2D application, or [20] for a 3D example). The present work is based on a method
employing the same mathematical tools. Its particular feature is the explicit use of a second-
order orientation tensor A, whose principal axes coincide with the material symmetry axes,
unlike the above-cited works that implicitly formulate the thermodynamic potential in the
orthotropy axes. The way chosen here to model the primary anisotropy of the material is to use
‘‘fabric tensors’’, which quantify directional data (see e.g. [21], for an exhaustive study on these
tensors).

Let w0 be the free energy of the undamaged material whose behaviour is restricted to small
strain (thermal and rate-dependent effects are neglected here). Linear elasticity is assumed for
this class of materials so that w0 is a quadratic function of the strain tensor e. Classically, w0

takes the following form in the case of initial isotropy:

w0ðeÞ ¼ k
2
ðtr eÞ2 þ l trðe:eÞ ; ð2Þ

where k and l are the Lamé constants. For initially isotropic materials, the expression of w0

thus contains only the strain tensor. The case of the transverse isotropy (and, more generally,
anisotropy) requires a directional (fabric) tensor A. The problem is then equivalent to finding
w0 such that:

w0ðQ:e:Qt;Q:A:QtÞ ¼ w0ðe;AÞ; 8Q 2 O;

w0ðQ:e:Qt;AÞ ¼ w0ðe;AÞ; 8Q 2 T ;
ð3Þ

where O is the full proper orthogonal group, i.e. O ¼ fQjQ � Qt ¼ Qt � Q ¼ Ig, and T 
 O is the
symmetry group corresponding to transverse isotropy. Relations (3) mean that w0 is an iso-
tropic invariant of e and A. The tensor function representation theory, [18], guides one to
obtain the expression of w0. This problem is similar to anisotropy resulting from changes in
internal structure, [22].

As it can be found in the literature, [23, 24], let us define A by:

A ¼ a � a; jjajj ¼ 1 ; ð4Þ

where a is the transverse isotropy direction. The tensor A thus contains the information on
anisotropy, e.g. the direction of the reinforcement in unidirectional fiber-reinforced compos-
ites. The dyadic product a � a is employed as w0 must be an even function of a, since the sense
of a is not significant.

According to [25], the expression of w0 must include quadratic terms in A: transverse
isotropic symmetry could not be represented by the solution of (3) if only linear terms in A
entered w0. After some calculation, the following expression of w0 has been found to be
sufficient to properly model the initial transverse isotropy:
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w0ðe;AÞ ¼ a1

2
ðtr eÞ2 þ a2trðe:AÞtr e þ b1

2
½trðe � AÞ�2 þ 2c1trðe � eÞ þ 2c2trðe � e � AÞ : ð5Þ

It is worth noting that a rigorous use of the representation theory of tensor functions would
lead to include in Eq. (5) terms of higher degree in A. However, the purpose here is to reach a
compromise between the mathematical formulation and the number of parameters to be
identified. The five parameters a1; a2; b1; c1; c2 are easily identified from the coefficients of the
stiffness tensor C0 (considered as experimentally known), by solving the following linear
system:

C0 ¼ o2w0

oeoe
)

C0
11 ¼ a1 þ 4c1 þ 2ða2 þ 2c2Þ þ b1;

C0
22 ¼ a1 þ 4c1;

C0
12 ¼ a1 þ a2;

C0
23 ¼ a1;

C0
55 ¼ 2c1 þ c2 :

8>>>><
>>>>:

ð6Þ

2.2
Extension to orthotropy
The previous paragraph showed the transversely isotropic elasticity expressed with a single
fabric tensor in the energy function w0. This allows now to model the initial response of a given
class of composites, for example those that are reinforced by unidirectional fibers. Most
composites (e.g. woven composites) exhibit orthotropic behaviour. This paragraph aims at
extending the case of transverse isotropy to orthotropy.

The modelling of the orthotropic behaviour is based here on the fact that orthotropy may be
considered as equivalent to a combination of three transverse symmetries with respect to three
orthogonal directions. Instead of a single fabric tensor, three directional operators Ai

ði ¼ 1; 2; 3) enter the expression of w0. Let w0ðe;AiÞ be the free energy for the transversely
isotropic material characterized by Ai:

w0ðe;AiÞ ¼
ai

1

2
ðtr eÞ2 þ ai

2 trðe:AiÞtr e þ bi
1

2
½trðe:AiÞ�2 þ 2ci

1 trðe:eÞ þ 2ci
2 trðe:e:AiÞ : ð7Þ

The following additive decomposition for orthotropy can be proposed:

w0ðe;A1;A2;A3Þ ¼
X3

i¼1

w0ðe;AiÞ ¼
X3

i¼1

ai
1

2

 !
ðtr eÞ2 þ

X3

i¼1

2ci
1

 !
trðe:eÞ

þ
X3

i¼1

ai
2 trðe:AiÞtr e þ bi

1

2
trðe:AiÞ½ �2þ2ci

2 trðAi:e:eÞ
� �

:

ð8Þ

The foregoing hypothesis that orthotropy can be expressed as a resultant action of three
transverse isotropy operators is put forward by assuming that Ai are unit and mutually or-
thogonal tensors (i.e.

P3
i¼1 Ai ¼ I). The two invariants trðe:eÞ and ðtr eÞ2 can thus be expressed

as follows:

trðe:eÞ ¼
X3

i¼1

trðAi:e:eÞ;

ðtr eÞ2 ¼
X3

i¼1

trðAi:eÞtr e :

ð9Þ

Replacing trðe:eÞ and ðtr eÞ2 by Eq. (9) in Eq. (8), the free energy for initial orthotropic
materials takes the following form:

w0ðe;A1;A2;A3Þ ¼
X3

i¼1

�aaitr e trðAi:eÞ þ �bbi trðAi:eÞ½ �2þ�cci trðAi:e:eÞ
� �

: ð10Þ
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It can be noted that since the three fabric tensors Ai are not independent in the case of
orthotropy (they are orthogonal), the 15 material parameters entering Eq. (8) are related by
following relationships:

�aai ¼ ai
2 þ

X3

k¼1

ak
1

2
;

�bbi ¼
bi

1

2
;

�cci ¼ ci
2 þ

X3

k¼1

2ck
1 :

ð11Þ

The 15 parameters thus reduce to nine constants, namely �aai; bi; �cci (i ¼ 1; 2; 3), whose values are
determined in the same way as for the case of the transverse isotropy, i.e. by identifying the
stiffness tensor components expressed in the orthotropy directions 1, 2, 3:

C0 ¼ o2w0

oeoe
)

C0
11 ¼ 2�aa1 þ 2�bb1 þ 2�cc1;

C0
22 ¼ 2�aa2 þ 2�bb2 þ 2�cc2;

C0
33 ¼ 2�aa3 þ 2�bb3 þ 2�cc3;

C0
12 ¼ �aa1 þ �aa2;

C0
13 ¼ �aa1 þ �aa3;

C0
23 ¼ �aa2 þ �aa3;

2C0
44 ¼ �cc2 þ �cc3;

2C0
55 ¼ �cc1 þ �cc3;

2C0
66 ¼ �cc1 þ �cc2 :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Cij ¼ 0 otherwise: ð12Þ

Remark 1
The solution proposed here (orthotropy modelled by three fabric tensors) is highly advanta-
geous and differs from others found in the literature. For example, [25, 26] model orthotropy
by a single tensor A. According to the representation theory of tensor functions, the most
general form of the stiffness tensor involving one fabric tensor A is:

C0
ijkl ¼ a1dijdkl þ a2ðAijdkl þ AkldijÞ þ a3ðdijAkmAml þ AimAmjdklÞ þ b1AijAkl

þ b2ðAijAkmAml þ AinAnjAklÞ þ b3AimAmjAknAnl þ c1ðdikdjl þ dildjkÞ
þ c2ðAikdjl þ Ajkdil þ Aildjk þ AjldikÞ
þ c3ðAimAmkdjl þ AjmAmldik þ AimAmldjk þ AjmAmkdilÞ ð13Þ

In [25], it was proved that the least material symmetry that can be represented by (13) is
orthotropy and that the material orthotropy axes coincide with the principal axes of A. In these
axes, A can be written as

A ¼
a1 0 0
0 a2 0
0 0 a3

2
4

3
5 : ð14Þ

There are then 12 parameters to be identified: a1; a2; a3; a1; a2; a3; b1; b2; b3; c1; c2; c3. Two cases
have to be considered :

� if A is unknown, Eq. (13) leads to a nonlinear system of nine equations with 12 unknowns.
The difficulty encountered to solve this system is a good reason to prefer the formulation
(10);

� if A is known a priori, Eq. (13) then reduces to a regular system. However, the preliminary
identification of A may not be simple : not only the principal directions of A have to be
determined but also the eigenvalues a1; a2; a3, i.e. the respective influence of each orthotropy
direction. This non trivial identification stage is not necessary in the method proposed in
this paper.
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Remark 2
Equation (10) allows one to model different levels of initial anisotropy:

� orthotropy, requiring the identification of the nine parameters �aai; �bbi; �cci (i ¼ 1; 2; 3);
� tetragonal symmetry (orthotropic symmetry and equivalence between two orthogonal axes,

e.g. 1 and 2), when �aa1 ¼ �aa2, �bb1 ¼ �bb2, �cc1 ¼ �cc2;
� cubic symmetry (orthotropic symmetry and equivalence between the three symmetry axes),

when �aa1 ¼ �aa2 ¼ �aa3, �bb1 ¼ �bb2 ¼ �bb3, �cc1 ¼ �cc2 ¼ �cc3;
� transverse isotropy (e.g, with respect to axis 1), when �aa2 ¼ �aa3, �bb2 ¼ �bb3 ¼ 0, �cc2 ¼ �cc3,
� isotropy when �aa1 ¼ �aa2 ¼ �aa3, �bb1 ¼ �bb2 ¼ �bb3 ¼ 0, �cc1 ¼ �cc2 ¼ �cc3. The free energy density w0 then

reduces to the classical expression with two parameters, k and l Eq. (2).

However, because of the limited number of invariants entering Eq. (10), orthotropy is the
weakest material symmetry (the strongest anisotropy) that can be modelled by the simplified
method proposed here.

In order to illustrate the identification procedure, consider the example of a bi-directional
(0�, 90�) ceramic-ceramic composite produced by SEP. It consists of 2D plates of a chemical
vapor-infiltration processed SiC matrix reinforced with plies of Nicalon fibers. The components
of the stiffness tensor are identified by an ultrasonic evaluation technique, [27], which makes it
possible to measure the nine stiffness coefficients describing orthotropy. If the fiber directions
are parallel to axes x2 and x3, the Cijkl components are:

C1111 ¼ 169 GPa;

C2222 ¼ 295 GPa;

C3333 ¼ 318 GPa;

C1122 ¼ 48 GPa;

C2233 ¼ 145 GPa;

C1133 ¼ 51 GPa;

C1212 ¼ 57 GPa;

C2323 ¼ 93 GPa;

C1313 ¼ 60 GPa ;

Note that the material is orthotropic (and not transversely isotropic) since

C2222 6¼ C3333;C1212 6¼ C1313;C1122 6¼ C1133 and C2323 6¼
1

2
ðC2222 � C2233Þ:

Solving the system (12) with the values for Cijkl leads to the following set of parameters
(�aai; �bbi; �cci), i ¼ 1; 2; 3.

�aa1 ¼ �23:0 GPa;

�bb1 ¼ 83:5 GPa;

�cc1 ¼ 24:0 GPa;

�aa2 ¼ 71:0 GPa;

�bb2 ¼ �13:5 GPa;

�cc2 ¼ 90:0 GPa;

�aa3 ¼ 74:0 GPa;

�bb3 ¼ �11:0 GPa;

�cc3 ¼ 96:0 GPa :

In Sec. 3, tension tests on plates made of this material will be simulated.

3
Anisotropic damage effects
The previous section was concerned with the elastic initial anisotropy (primary anisotropy).
This anisotropy may strongly affect the matrix-cracking mechanism. The aim of this section is
to propose a model accounting for primary anisotropy, mesocrack growth and interaction
between both kinds of anisotropy (initial and induced by the presence of defects). The model is
assumed to concern material degradation mechanisms not exhibiting notable irreversible
stress/strain effects after loading-unloading cycles. This is especially valid for brittle matrix
composites when the matrix alone is damaged. A contrary mechanism is e.g. residual strain
caused by fiber debonding and sliding at the fiber/matrix interface in fiber-reinforced com-
posites. These mechanisms follow the matrix cracking and intervene at an advanced stage of
loading; they are not the subject of this section.

3.1
Damage variable and thermodynamic potential
A single internal variable describes the generation and growth of mesocracks since this
mechanism is the only dissipative phenomenon considered. A second-order tensor D is chosen
as damage variable to account for defect orientation
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D ¼
X

i

diðSÞni � ni ; ð15Þ

where ni is the normal to the i-th system of parallel mesocracks and diðSÞ a dimensionless
scalar function accounting for the extent of the cracks. Note that D is a symmetric second–
order tensor; it has three positive eigenvalues and three orthogonal eigenvectors. This means
that any system of microcracks decomposed into 1; . . . ; n subsystems of parallel cracks can be
reduced to three equivalent orthogonal sets of cracks. The presence of microcracks thus in-
duces a particular form of orthotropy. This form of the damage variable is motivated by
micromechanics, e.g. [28]. However, the term d(S) has to be considered here as a macroscopic
parameter and not as a microscopic quantity, unlike the classical crack density parameterP

i ðliÞ3�V for circular cracks of radii li in a representative volume element V.

The basic version of the model at stake [12] assumes the initial isotropy of the material and
postulates that any damage configuration is described by the single variable D. Microme-
chanical studies, [28], assuming noninteraction of penny-shaped cracks in a homogeneous
isotropic elastic matrix, show that damage should be rigorously characterized by two damage
parameters, namely D and its extension to the fourth-order,

P
i diðSÞni � ni � ni � ni. How-

ever, when cracks are open (i.e. active), the influence of the term involving the fourth-order
tensor is negligible with respect to that of the D-term. The corresponding term should be
included when crack closure intervenes, [13], i.e. for example in the case of cyclic loading. For
the sake of simplicity, only active damage is considered here and the previous fourth-order
term will not enter the constitutive equations. Accounting for damage deactivation by mi-
crocrack closure can be done directly by the procedure developed in [13].

While the above conventional damage parameter D alone is sufficient to deal with active
damage for initially isotropic materials, some works, [17], prove that it should be accompanied
with further insight into cracking when considering anisotropic materials. The enhanced
proper crack density parameter that adjusts ‘‘relative weight’’ of a given crack system ‘k’
according to its orientation with respect to the matrix is, for each crack, a fourth-order tensor
proportional to nðkÞ � BðkÞ � nðkÞ, see [17], where nðkÞ is the normal to the k-th crack and BðkÞ is
the crack-opening displacement second-order tensor related to the system k, namely the tensor
which links the average displacement discontinuity vector to the traction vector. The tensor B
reflects the fact that e.g. cracks normal to the stiffer direction of the matrix produce a stronger
impact on the effective stiffness than the ones normal to the softer direction. It depends on the
crack orientation with respect to the anisotropy axes of the matrix. Its expression is difficult to
find in the closed form in the most general case.

An alternative approach advanced here circumvents this difficulty by keeping a macroscopic,
while physically motivated, formulation: no reference is made to the exact micromechanical
form of n � B � n (which is anyway hardly known) while a macroscopic fourth-order tensor
involving both D (characterizing orientation and extend of the crack array) and A (i.e. the
orthotropy direction, see previous section) enters explicitly the equations of the model. The
form of this term is chosen by extension of the basic version of the model dealing with initially
isotropic materials. Indeed, the stiffness tensor C related to this version is:

C ¼ C0 þ a I � D þ D � Ið Þ þ 2b I�D þ D� Ið Þ ; ð16Þ

where C0 is the initial elastic stiffness tensor, a and b are material parameters and the tensor
products � and � are defined by:

a � bð Þijkl¼ aijbkl;

a�bð Þijkl¼ 1
2 aikbjl þ ailbjk

� �
:

ð17Þ

The anisotropic enhanced version accounting through D, for the relative weight of equivalent
crack systems with respect to primary anisotropy axes is obtained by replacing in (16) the
identity (‘‘isotropic’’) tensor I by the orientation (‘‘anisotropic’’) tensors Ai:

C ¼ C0 þ
X3

i¼1

ai Ai � D þ D � Aið Þ þ 2bi Ai �D þ D�Aið Þ ¼ C0 þ DC : ð18Þ

Now, the initial Ai-embodied anisotropy co-exists with the damage-induced one: the fourth-
order tensors involving Ai and D combine initial orthotropy and evolving damage effects. The
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expression of DC, like that of B, contains information on damage and primary anisotropy. The
group of elastic symmetry of the properties is an intersection of the group of symmetry of C0

(orthotropy of the matrix without cracks) and the one characterizing DC. If the principal axes
of D coincide with the orthotropy axes of C0, the material remains orthotropic. If they do not
coincide, the effective properties have no elements of symmetry. Six parameters, ai; bi,
i ¼ 1; 2; 3, have to be identified as compared to two in the basic version. Expression (18) leads
to the following thermodynamic potential (free energy per unit volume):

wðe;D;AiÞ ¼
X3

i¼1

�aaitr e trðAi:eÞ þ �bbi trðAi:eÞ½ �2þ�ccitrðAi:e:eÞ
� �

þ
X3

i¼1

aitr e:Aið Þtr e:Dð Þ þ 2bitr e:Ai:e:Dð Þ½ � : ð19Þ

The second term represents the variation of free energy due to damage and the effects of
interaction of primary anisotropy with the damage-induced one, leading eventually to further
loss of material symmetry. Unlike the expression of the energy for the basic version of the
reference model, [12], the term g trðe:DÞ giving rise to residual macroscopic stress for e ¼ 0
(and, dually, e 6¼ 0 for r ¼ 0) is not considered in Eq. (19).

The corresponding elastic stress r and thermodynamic force FD related to damage are
determined by partial derivation of w:

r ¼ ow

oe
¼
X3

i¼1

ai tr Ai:eð ÞI þ ðtr eÞAi½ � þ 2bitr Ai:eð ÞAi þ ci Ai:e þ e:Aið Þ
� �

þ
X3

i¼1

ai tr e:Dð ÞAi þ tr e:Aið ÞD½ � þ 2bi Ai:e:D þ D:e:Aið Þf g ; ð20Þ

FD ¼ � ow

oD
¼
X3

i¼1

�aitr e:Aið Þe � 2bie:Ai:e½ � ; ð21Þ

where FD can be interpreted as the damage energy release rate.
Note that there exists an explicit relation between the parameters ai and bi, the matrix

constants and the damage variable. The parameters ai and bi are related to the influence of
damage on the elastic moduli: they represent fundamental properties of the material. For
example, consider a shear loading (r12 ¼ r21 ¼ s, others rij ¼ 0) with the following damage
configuration: D11 ¼ D, others Dij ¼ 0 (a single crack system normal to the direction 1).
Equation (20) leads to the following expression for s:

s ¼ 2G0
12e12 þ 2b1e12D þ 2b2e12D ; ð22Þ

where G0
12 is the shear modulus without damage effect. The global shear modulus G12 is then

G12 ¼ G0
12 þ ðb1 þ b2ÞD : ð23Þ

The coefficients bi directly affect the shear moduli. Moreover, the Young moduli are altered by
a combination of ai and bi, the respective expressions can be easily exemplified and are not
explicitly cited in the paper.

3.2
Damage evolution law
The threshold f ¼ 0 delimiting the elastic domain is expressed in the proper space of com-
ponents of FD, the thermodynamic force related to D (damage driving force). The evolution of
D is assumed to follow the normality rule, corresponding to the principle of maximum dis-
sipation and exhibiting splitting-like damage mechanism commonly observed in brittle solids.
However, unlike the classical standard models, f is a function of a part of FD only: experiments,
[29], give evidence to the role played by the positive strain during the damage process. That is
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why the damage criterion f ðFD;DÞ ¼ 0 is chosen explicitly dependent on the positive part FDþ

of FD:

FDþ ¼
X3

i¼1

�aitrðe:AiÞeþ � 2bie
þ:Ai:e

þ½ �; FD� ¼ FD � FDþ; e ¼ eþ þ e� ; ð24Þ

where FDþ is defined as a part of FD involving eþ (positive strain), which is built by extracting
the positive eigenvalues of e (see [30, 13] for explicit construction of eþ). One assumes that the
part FDþ plays a key role in the damage criterion:

f ðFD �FD�;DÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
tr FD �FD�ð Þ � FD �FD�ð Þ½ �

r
þBtr FD �FD�� �

�D
� �

�ðC0 þC1trDÞ¼ 0 ;

ð25Þ

where C0 is the initial damage threshold, while C1 and B are related to the evolution of the
surface f ¼ 0 when D evolves. The rate-independent damage evolution law is written as follows:

D
�
¼

0 if f < 0 or f ¼ 0; _ff < 0,

KD
of
oFD ¼ KD

FDþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðFDþ:FDþ

p
Þ
þ BD

� �
if f ¼ 0 and _ff ¼ 0;KD � 0 .

8<
: ð26Þ

The importance of the positive strain appears in the first term of the evolution law involving
FDþ. The second term BD is called the drag-term, it represents the influence of the current value
of damage on its instantaneous evolution, see also [15].

3.3
Dissipation
The choice of the decomposition (24) for FD has been made on the basis of thermodynamic
considerations. Let / be the intrinsic dissipation due to mesocrack growth:

/ ¼ FD : D
�

: ð27Þ

Let us consider for simplicity the case B ¼ 0. Equations (21) and (26) lead to the following
expression of dissipation:

/ ¼ KD
tr FD:FDþð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tr FDþ:FDþð Þ

p : ð28Þ

Since the decomposition (24) gives rise to the orthogonality of FDþ and FD� and KD is positive,
/ has the same sign as FDþ : FDþ, i.e. / is always positive: the second law of thermodynamics is
thus satisfied.

When B is different from zero, the sign of / becomes undetermined for any expression of the
part of FD entering Eq. (25). However, the expression (25) of the damage criterion ensures the
convexity of the loading surface (and then the non-negative values of /), provided the absolute
value of B is less than a given limit depending on the damage level. A series of simulations has
allowed to find a bound to the value of damage and to conclude that the dissipation always
remains positive when jBj does not exceed

ffiffiffi
2

p
=2. Moreover, B has to be negative, since BD in

(24) is a drag-term. In conclusion, the decomposition (24) and the expression (25) allow to

ensure non-negative values of / provided �
ffiffi
2

p

2 � B � 0.

3.4
Example
The predictive capacity of the presented approach is tested by simulating tension tests on the
composite whose elastic constants have been determined in Sec. 2.2. The experimental data are
those of [16] and [31]. They consist of tension tests on bidirectional (0�; 90�) woven ceramic
matrix plates, with different orientations h of the tension axis with respect to fiber axes, see
Fig. 1.
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The above cited references provide tension tests for h ¼ 0�, 20� and 45�. Parameters
C0;C1;B; a2; a3; b2; b3 are identified on the 0�- and 45�-tests. The third tension test (20�) is used
as a preliminary validation test. Note that no experimental information on the direction 1 is
available. Thus, in this particular case, the parameters a1 and b1 are arbitrarily chosen to be
equal to zero. Table 1 collects the values of the parameters.

Figures 2–4 exhibit a fair correlation between the experimental data and the corresponding
simulation (r33 in MPa). Note, in particular, the respective position (Fig. 5) of each curve in
agreement with the experiment, [16]: even if the elastic response of the composite for h ¼ 45� is
initially stiffer than the response in the direction parallel to fibers (h ¼ 0�), the stress level is
lower for h ¼ 45� than for h ¼ 0� or 20�. This illustrates the interaction effect between (ori-
ented) cracking and the primary orthotropy on resultant material degradation in accordance
with the postulates formulated in Sec. 3.1.

4
Conclusion and prospective work
The purpose of this work was to complete a three-dimensional damage modelling framework
developed in earlier works [12–15] for a large class of quasi-brittle solids. It aimed at

Fig. 1. Schematization of the plate under tension

Table 1. Material constants for a class of CMC

C0 (MPa) C1 (MPa) B (1) a2 (MPa) b2 (MPa) a3 (MPa) b3 (MPa)
0.017 0.058 )0.7 0. )62000. 0. )48000.

Fig. 2. Comparison simulation/experiment h ¼ 0�

Fig. 3. Comparison simulation/experiment h ¼ 45�
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adjoining interactional effects between damage-induced orthotropy (a salient effect of the
existing model) and an initial anisotropy introduced in this paper. This has been done by
pursuing a method which can be considered as phenomenological yet micromechanically
motivated, in the spirit of the unified approach presented in the survey article [34]. The
existing framework includes damage growth by oriented microcracking, effects of opening/
closure (and inverse) transition for microcrack sets and complementary dissipation effects
due to frictional resistance and sliding on closed crack sets. These problems are approached
within the rate-type constitutive theory with internal variables. The extension proposed in the
present paper concerns quasi-brittle solids exhibiting a marked initial anisotropy indepen-
dently of the secondary, damage-induced one. The initial orthotropy has been introduced
here in a particular thrifty manner, allowing for tractable identification due to a reduced
number of material constants as compared to other existing schemes. The model allows,
furthermore, to take into account major coupling effects between the primary anisotropy and
the secondary, damage-induced and evolving anisotropy. This has been done by introducing
invariant terms involving simultaneously damage tensor and material fabric tensor in the
representation of the free energy as a thermodynamic potential, Eq. (19). This representation
is an alternative to the micromechanical expression postulated in [17] comprising the crack-
compliance tensor B and indicators of crack orientation. An illustration of the interactional
effects at stake (primary vs. damage-induced anisotropy) has been given for a brittle matrix
fiber-reinforced composite.

The actual completion of the damage modelling framework [12–15] maintains a modular
structure of the framework, adding an ingredient to existing modelling segments. They are built
to provide tractable tools for efficient structural analysis, see [15, 34], regarding numerical
integration and implementation criteria.

Prospective work concerns some adaptation of the above-mentioned complementary dis-
sipative model, [14], involving frictional sliding on closed cracks to brittle composites with
structural (primary) anisotropy focused on by the present paper. In particular, for fiber
reinforced composites, sliding at fiber/matrix interface as well as (final) fiber breakage are
known as successive damage stages leading to failure, see, e.g. [32, 33]. The modelling
framework presented can offer an alternative to existing approaches, [4, 35] due to vigorous
search of an optimum regarding tractability (a number of constants to be identified) vs.
pertinence considerations. For example, to deal with plasticity-like slip on fiber/matrix
interfaces, one can further implement the modelling segment presented in this paper. Unlike
for the microcrack sliding, the fiber/matrix sliding occurs in fixed (known) directions ai

(i ¼ 1; 2; 3) interpreted in Sec. 2 with symmetric fabric (orientation) tensors Ai. A scalar
internal variable ci (i ¼ 1; 2; 3), representing relative interfacial sliding, associated with re-
spective tensor Ai is combined with the invariant trðe:Ai) to generate residual effects due to
frictional slip in the way shown in [14]. The form of the energy w given above by Eq. (19) is
then completed to yield the following:

Fig. 4. Comparison simulation/experiment h ¼ 20�

Fig. 5. Respective position of the simulated response for
h ¼ 0�, 20� and 45�
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wðe;D;ci;AiÞ¼
X3

i¼1

�aaitre trðAi:eÞþ �bbi trðAi:eÞ½ �2þ�ccitrðAi:e:eÞ
� �

þ
X3

i¼1

aitr e:Aið Þtr e:Dð Þþ2bitr e:Ai:e:Dð Þ½ �þ
X3

i¼1

gi
1citr e:Aið Þþgi

2c
2
i

� �
; ð29Þ

where gi
1 and gi

2 (i ¼ 1; 2; 3) are parameters to be identified. From Eq. (29) one can obtain the
novel expression for stress r:

r ¼ ow

oe
¼
X3

i¼1

�aai tr Ai:eð ÞI þ ðtr eÞAi½ � þ 2bitr Ai:eð ÞAi þ �cci e:Ai þ Ai:eð Þ
� �

þ
X3

i¼1

ai tr e:Dð ÞAi þ tr e:Aið ÞD½ � þ 2bi Ai:e:D þ D:e:Aið Þf g þ
X3

i¼1

gi
1ciAi ð30Þ

Beside the classical terms similar to those of (19), the third term of (29) includes energy terms
relative to sliding-induced plasticity effects due to friction at the interface fiber/matrix when the
fiber is debonding in slip-like manner. Further work will attempt to propose an adequate law
for the evolution of the variables ci.
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